
Xfai - DEX
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: May 22nd, 2023 - June 19th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 6

CONTACTS 7

1 EXECUTIVE OVERVIEW 8

1.1 INTRODUCTION 9

1.2 AUDIT SUMMARY 9

1.3 SCOPE 10

1.4 TEST APPROACH & METHODOLOGY 11

2 RISK METHODOLOGY 12

2.1 EXPLOITABILITY 13

2.2 IMPACT 14

2.3 SEVERITY COEFFICIENT 16

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 18

4 FINDINGS & TECH DETAILS 19

4.1 (HAL-01) ADDLIQUIDITYETH MISHANDLES DEPOSIT - MEDIUM(5.6) 21

Description 21

Code Location 21

Proof Of Concept 22

BVSS 24

Recommendation 24

Remediation Plan 24

4.2 (HAL-02) IMPROVEMENTS FOR FLASH CALLS - INFORMATIONAL(0.0) 25

Description 25

Code Location 25

BVSS 27

1

Recommendation 27

Remediation Plan 27

4.3 (HAL-03) ENFORCE XFETH CONSTRUCTOR TO RECEIVE ETH - INFORMA-

TIONAL(0.0) 28

Description 28

Code Location 28

BVSS 29

Recommendation 29

Remediation Plan 29

4.4 (HAL-04) NO SLIPPAGE CONTROL WHEN MINTING XFETH - INFORMA-

TIONAL(0.0) 30

Description 30

Code Location 30

BVSS 31

Recommendation 31

Remediation Plan 31

4.5 (HAL-05) ADDLIQUIDITYETH FUNCTION MAY REVERT ON FIRST DEPOSIT -

INFORMATIONAL(0.0) 32

Description 32

Code Location 32

BVSS 33

Recommendation 33

Remediation Plan 33

4.6 (HAL-06) ABSENCE OF TOKEN OWNERSHIP CHECK IN THE BOOST FUNCTION -

INFORMATIONAL(0.0) 34

Description 34

2

Code Location 34

BVSS 34

Recommendation 35

Remediation Plan 35

4.7 (HAL-07) THE PROTOCOL DOES NOT ALLOW TO ADD LIQUIDITY USING

XFETH - INFORMATIONAL(0.0) 36

Description 36

BVSS 36

Recommendation 36

Remediation Plan 36

4.8 (HAL-08) REMOVING LIQUIDITY CAN REVERT IF TOKEN ORDER IS NOT

SET - INFORMATIONAL(0.0) 37

Description 37

Code Location 37

BVSS 38

Recommendation 38

Remediation Plan 38

4.9 (HAL-09) REDUNDANT VARIABLE - INFORMATIONAL(0.0) 39

Description 39

Code Location 39

BVSS 40

Recommendation 40

Remediation Plan 40

4.10 (HAL-10) LACK OF UPGRADABILITY PATTERN - INFORMATIONAL(0.0) 41

Description 41

BVSS 41

Recommendation 41

3

Remediation Plan 41

4.11 (HAL-11) CONVERT STRINGS FOR CUSTOM ERRORS TO SAVE GAS - INFOR-

MATIONAL(0.0) 42

Description 42

BVSS 42

Recommendation 42

Remediation Plan 42

4.12 (HAL-12) FLOATING PRAGMA - INFORMATIONAL(0.0) 43

Description 43

BVSS 43

Recommendation 43

Remediation Plan 43

4.13 (HAL-13) LACK OF PAUSE FUNCTIONALITY ON THE CONTRACTS - INFOR-

MATIONAL(0.0) 44

Description 44

BVSS 44

Recommendation 44

Remediation Plan 44

4.14 (HAL-14) LACK OF TWO STEP OWNERSHIP TRANSFER - INFORMA-

TIONAL(0.0) 45

Description 45

BVSS 45

Recommendation 45

Remediation Plan 46

5 AUTOMATED TESTING 47

5.1 AUTOMATED SECURITY SCAN 48

Description 48

4

MythX results 48

5

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/15/2023 Luis Buendia

0.2 Document Edit 06/18/2023 Luis Buendia

0.3 Document Edit 06/19/2023 Luis Buendia

0.4 Draft Review 06/19/2023 Gokberk Gulgun

0.5 Draft Review 06/19/2023 Gabi Urrutia

1.0 Remediation Plan 06/27/2023 Luis Buendia

1.1 Remediation Plan Review 06/27/2023 Gokberk Gulgun

1.2 Remediation Plan Review 06/28/2023 Gabi Urrutia

6

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Luis Buendia Halborn Luis.Buendia@halborn.com

7

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Luis.Buendia@halborn.com

8

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Xfai engaged Halborn to conduct a security audit on their smart contracts

beginning on May 22nd, 2023 and ending on June 19th, 2023. The security

assessment was scoped to the smart contracts provided to the Halborn

team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that were addressed

and acknowledged by the Xfai team.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 SCOPE

IN-SCOPE:

The security assessment was scoped to the following Xfai Repository :

• InfinityNFTPeriphery.sol

• XfaiFactory.sol

• XfaiINFT.sol

• XfaiPool.sol

• XfaiV0Core.sol

• XfaiV0Periphery01.sol

• xfETH.sol

• TransferHelper.sol

• XfaiLibrary.sol

Xfai Smart Contracts Commit ID:

eb9a7a821ef71e7ad65abe815567d16dfe9d997a

REMEDIATION PLAN:

Xfai Smart Contracts Remediation Commit ID:

3ceca61a67a245e4bb7d7774cfbb34e3eec1aeaa

EXTRA COMMIT WITH ADDITIONAL FIXES:

The xFai team detected a misbehave on the periphery when withdrawing

liquidity on a specific scenario. Therefore, the code was modified to

ensure the proper functionality in favor of liquidity providers.

The commit ID for this change is 320a6b16589a8f3b0503e590b651ec91df06f789

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/xfai-labs/xfai/tree/eb9a7a821ef71e7ad65abe815567d16dfe9d997a/libs/dex/contracts
https://github.com/xfai-labs/xfai/commit/eb9a7a821ef71e7ad65abe815567d16dfe9d997a
https://github.com/xfai-labs/xfai/commit/3ceca61a67a245e4bb7d7774cfbb34e3eec1aeaa
https://github.com/xfai-labs/xfai/commit/320a6b16589a8f3b0503e590b651ec91df06f789

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the contracts’ solidity code and can

quickly identify items that do not follow security best practices. The

following phases and associated tools were used throughout the term of

the audit:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing with custom scripts. (Foundry).

• Static Analysis of security for scoped contract, and imported func-

tions manually.

• Testnet deployment (Anvil).

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

13

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

14

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

15

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

16

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

17

EX
EC

UT
IV

E
OV

ER
VI

EW

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 0 13

18

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

ADDLIQUIDITYETH MISHANDLES DEPOSIT Medium (5.6) SOLVED - 06/22/2023

IMPROVEMENTS FOR FLASH CALLS
Informational

(0.0)
ACKNOWLEDGED

ENFORCE XFETH CONSTRUCTOR TO
RECEIVE ETH

Informational
(0.0)

ACKNOWLEDGED

NO SLIPPAGE CONTROL WHEN MINTING
XFETH

Informational
(0.0)

ACKNOWLEDGED

ADDLIQUIDITYETH FUNCTION MAY REVERT
ON FIRST DEPOSIT

Informational
(0.0)

ACKNOWLEDGED

ABSENCE OF TOKEN OWNERSHIP CHECK IN
THE BOOST FUNCTION

Informational
(0.0)

ACKNOWLEDGED

THE PROTOCOL DOES NOT ALLOW TO ADD
LIQUIDITY USING XFETH

Informational
(0.0)

FUTURE RELEASE

REMOVING LIQUIDITY CAN REVERT IF
TOKEN ORDER IS NOT SET

Informational
(0.0)

ACKNOWLEDGED

REDUNDANT VARIABLE
Informational

(0.0)
SOLVED - 06/22/2023

LACK OF UPGRADABILITY PATTERN
Informational

(0.0)
ACKNOWLEDGED

CONVERT STRINGS FOR CUSTOM ERRORS
TO SAVE GAS

Informational
(0.0)

ACKNOWLEDGED

FLOATING PRAGMA
Informational

(0.0)
ACKNOWLEDGED

LACK OF PAUSE FUNCTIONALITY ON THE
CONTRACTS

Informational
(0.0)

ACKNOWLEDGED

LACK OF TWO STEP OWNERSHIP TRANSFER
Informational

(0.0)
ACKNOWLEDGED

19

EX
EC

UT
IV

E
OV

ER
VI

EW

20

FINDINGS & TECH
DETAILS

4.1 (HAL-01) ADDLIQUIDITYETH
MISHANDLES DEPOSIT - MEDIUM (5.6)

Description:

The function addLiquidityETH from the XfaiV0Periphery01.sol contract

takes ETH received from the user and deposits it into the WETH/XFETH

pool. If the pool has liquidity, it computes the amount to deposit of

each asset. First, it calculates the proportional amount of ETH sent for

the sum of the amounts of each token that the pool has. Then it subtracts

the obtained value to the amount of sent ETH to transform it to xfETH.

As xfETH tends to increase its value, this calculation can result in a

non-optimal deposit, making users obtain less LP tokens than the optimal

distribution may achieve.

Code Location:

Listing 1: xfETH.sol

153 function addLiquidityETH(

154 address _to ,

155 uint _deadline

156) external payable override ensure(_deadline) returns (uint

ë liquidity) {

157 address _weth = weth; // gas saving

158 uint amountETH;

159 uint amountXfETHtoETH;

160 address pool = IXfaiFactory(factory).getPool(_weth);

161 if (pool == address (0)) {

162 // create the pool if it doesn 't exist yet

163 pool = IXfaiFactory(factory).createPool(_weth);

164 }

165 (uint ETHReserve , uint xfETHReserve) = IXfaiPool(pool).

ë getStates ();

166 if (ETHReserve == 0 && xfETHReserve == 0) {

167 (amountETH , amountXfETHtoETH) = (msg.value / 2, msg.value /

ë 2);

168 } else {

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

169 amountETH = (msg.value * ETHReserve) / (ETHReserve +

ë xfETHReserve);

170 amountXfETHtoETH = msg.value - amountETH;

171 }

172 uint amountXfETH = IXFETH(xfETH).deposit{value:

ë amountXfETHtoETH }();

173 IWETH(_weth).deposit{value: amountETH }();

174 TransferHelper.safeTransfer(xfETH , pool , amountXfETH);

175 TransferHelper.safeTransfer(_weth , pool , amountETH);

176 liquidity = IXfaiV0Core(core).mint(_weth , _to);

177 require(msg.value == amountETH + amountXfETHtoETH , '

ë XfaiV0Periphery01: INSUFFICIENT_AMOUNT ');

178 }

Proof Of Concept:

The issue resides in the fact that the calculation for the corresponding

amount of xfETH is the amount of ETH that will be converted to xfETH. Thus,

if the value of xfETH is higher than ether, this amount will decrease

when converted to the token system. As the formula for minting LP tokens

takes the minimum of the resulting product of the added tokens, the LP

tokens minted may be lower than other distributions.

The next scenario is used to illustrate the described issue.

1. ETH to Xfeth price has a relation of 3 Eth to 2 xfETH.

2. ETH balance of xfETH contract is 1.5 bigger than the total supply.

3. The WETH/XFETH pool is balanced, with 300 WETH on reserve and 200

xfETH on weight.

4. User deposits 10 ether.

5. The test also computes the LP minted with a different distribution

based on the values previous to the original deposit.

Listing 2: ITest4.sol

1 pragma solidity ^0.8.19;

2

3 import 'test/Deployer.sol';

4

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

5 contract ITest is Deployer {

6

7 MockWETH weth2;

8

9 function setUp () public override {

10 super.setUp ();

11

12 deal(address(this), 1000 ether);

13 // xfaiperiphery.addLiquidityETH{value: 20 ether }(address(

ë this), block.timestamp +1000);

14 xfactory.createPool(address(weth));

15 address pool = xfactory.getPool(address(weth));

16 xfeth.deposit{value: 20 ether }();

17 weth.deposit{value: 30 ether }();

18 xfeth.transfer(pool , 20 ether);

19 weth.transfer(pool , 30 ether);

20 xfaicore.mint(address(weth), address(this));

21 }

22

23 function test_integration_addLiquidityEth () public {

24

25 uint256 newBalance = (address(xfeth).balance * 3) / 2;

26 deal(address(xfeth), newBalance);

27

28 address pool = IXfaiFactory(xfactory).getPool(address(weth

ë));

29 (uint ETHReserve , uint xfETHReserve) = IXfaiPool(pool).

ë getStates ();

30

31 uint256 totalSupply = MockERC20(pool).totalSupply ();

32

33 uint256 originalLP = xfaiperiphery.addLiquidityETH{value:

ë 10 ether }(address(this), block.timestamp +1000);

34

35 uint amountETHNew = 5 ether;

36 uint amountXfETHtoETHNew = 10 ether - amountETHNew;

37 uint amountXfETHNew = xfeth.ETHToXfETH(amountXfETHtoETHNew

ë);

38

39 uint liquidityNew = Math.min((amountETHNew * totalSupply)

ë / ETHReserve , (amountXfETHNew * totalSupply) / xfETHReserve);

40

41 console.log('LPOriginal ', originalLP);

42 console.log('LPImproved ', liquidityNew);

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

43 }

44 }

The next screenshots show the difference between the LP tokens obtained.

As it is possible to observe, the difference does exist.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:L/R:N/S:U (5.6)

Recommendation:

Consider using a new formula that obtains the optimal distribution. As

this may not be an easy task, it can also be a reasonable approach to

establish a user defined minimal distribution to perform the calculations.

It is also advised to set a minimal LP tokens to be obtained to avoid

front-running issues.

Remediation Plan:

SOLVED: The Xfai team solved the issue on the next commit ID

3ceca61a67a245e4bb7d7774cfbb34e3eec1aeaa.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/xfai-labs/xfai/commit/3ceca61a67a245e4bb7d7774cfbb34e3eec1aeaa

4.2 (HAL-02) IMPROVEMENTS FOR FLASH
CALLS - INFORMATIONAL (0.0)

Description:

The Xfai Protocol has two different functions to perform flash calls.

First one through a flash mint on the Xfeth.sol contract. The second one

is a classic flash loan on the XfaiV0Core.sol contract.

Although the functions are technically correct from a basic functionality

point of view, the standard established on EIP-3165 is not fulfilled.

The standard improvements are:

• Implement a flashFee view function to compute the fee for a given

token amount.

• Implement a maxFlashLoan view function to obtain the maximum number

of tokens available.

• Return true if the execution is successful.

• Control the return value of the callback function.

• Send the parameters of msg.sender, token, amount, fee and data as

inputs to the receiver callback function.

Code Location:

Listing 3: XFETH.sol (Line 186)

174 function flashMint(uint _amount) external override nonReentrant

ë isPublic {

175 // get current ETH balance

176 uint ETHBalance = address(this).balance;

177 uint xfETHTotalSupply = totalSupply ();

178

179 // compute fee

180 uint fee = (_amount * flashMintFee) / 10000;

181

182 // mint tokens

183 _mint(msg.sender , _amount);

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

184

185 // hand control to borrower

186 IBorrower(msg.sender).executeOnFlashMint(_amount);

187

188 // burn tokens + fee

189 _burn(msg.sender , _amount + fee); // reverts if `msg.sender `

ë does not have enough tokens to burn

190

191 // double -check that the contract 's ETH balance has not

ë decreased

192 assert(address(this).balance >= ETHBalance);

193

194 // double -check that the contract 's xfETH supply has decreased

195 assert(totalSupply () < xfETHTotalSupply);

196

197 emit FlashMint(msg.sender , _amount);

198 }

Listing 4: XfaiV0Core.sol (Line 335)

323 function flashLoan(

324 address _token ,

325 uint _amount ,

326 address _to ,

327 bytes calldata _data

328) external override pausable singleLock(_token) {

329 require(_to != address (0), 'XfaiV0Core INVALID_TO ');

330 address pool = XfaiLibrary.poolFor(_token , factory ,

ë poolCodeHash);

331 (uint reserve ,) = IXfaiPool(pool).getStates ();

332 require(_amount <= reserve , 'XfaiV0Core:

ë INSUFFICIENT_OUTPUT_AMOUNT ');

333 uint balance = IERC20(_token).balanceOf(pool);

334 IXfaiPool(pool).linkedTransfer(_token , _to , _amount); //

ë optimistically transfer tokens

335 IXfaiV0FlashLoan(_to).flashLoan(pool , _amount , _data);

336 require(

337 IERC20(_token).balanceOf(pool) >= balance + ((_amount *

ë getTotalFee ()) / 10000) ,

338 'XfaiV0Core: INSUFFICIENT_AMOUNT_RETURNED '

339);

340 IXfaiPool(pool).linkedTransfer(_token , infinityNFT , (_amount *

ë infinityNFTFee) / 10000); // send lnft fee to fee collecting

ë contract

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

341 IXfaiPool(pool).update(IERC20(_token).balanceOf(pool), IERC20(

ë xfETH).balanceOf(pool));

342 emit FlashLoan(_to , _amount);

343 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

From all the previous detailed improvements, consider implementing all of

them. Nonetheless, there is one that the Halborn team strongly suggests.

These are the parameters specified for the receive callback function.

By adding the msg.sender it is ensured that the receiver fallback function

executes from trusted origins. Adding the fee avoids the receiver contract

to perform any computation or further contract calls to obtain this

value. Sending the token address simplifies the logic of the receiver.

Finally, the data is absolutely needed to execute the adequate control

flow statements on the receiver side.

Moreover, consider implementing interfaces following the standard to

simplify the usability of the protocol.

Reference EIP-3156

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://eips.ethereum.org/EIPS/eip-3156

4.3 (HAL-03) ENFORCE XFETH
CONSTRUCTOR TO RECEIVE ETH -
INFORMATIONAL (0.0)

Description:

The xfEth.solcontract must receive ether on the constructor. The formula

used for minting liquidity on the deposit function uses the total supply

of xfeth on the numerator of a division to calculate the number of tokens

to give in return. If this value is zero, the returned amount will always

be zero.

Code Location:

Listing 5: XFETH.sol

77 constructor(address _owner , uint _flashMintFee) payable ERC20 () {

78 _mint(address (0), msg.value);

79 owner = _owner;

80 flashMintFee = _flashMintFee;

81 _status = _NOT_ENTERED;

82 _name = 'Xfai ETH';

83 _symbol = 'XFETH ';

84 }

Listing 6: XFETH.sol

153 function deposit () public payable override nonReentrant returns (

ë uint amountInXfETH) {

154 amountInXfETH = (msg.value * totalSupply ()) / (address(this).

ë balance - msg.value);

155 _mint(msg.sender , amountInXfETH);

156 emit Deposit(msg.sender , amountInXfETH , msg.value);

157 }

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider adding a require statement to enforce the contract to receive

ether when deployed.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.4 (HAL-04) NO SLIPPAGE CONTROL
WHEN MINTING XFETH - INFORMATIONAL
(0.0)

Description:

The deposit function of xfETH.sol contract allows sending ether and

receive xfeth token in return. The nature of this contract allows xfeth

value to increase, by reducing the total supply through the fee burned

on the flashMint function and remaining the same native token balance.

The Xfai DEX is designed to work in optimal conditions, with flashMints

being constantly used to take advantage of arbitrage opportunities. It

also means, any time an arbitrageur succeeds, all the pools will get

unbalanced, starting a virtuous loop of constant profit for all actors

in the system.

Due to this, it is plausible that a user who attempts to deposit ETH and

get Xfeth in return does not obtain the desired amount. Moreover, in

certain value ranges, it is possible to send ETH and obtain zero Xfeth in

return. So, considering these two scenarios, it is sensible to consider

implementing a slippage control of the minimal amount of Xfeth expected

on the deposit function.

Code Location:

Listing 7: xfETH.sol

153 function deposit () public payable override nonReentrant returns (

ë uint amountInXfETH) {

154 amountInXfETH = (msg.value * totalSupply ()) / (address(this).

ë balance - msg.value);

155 _mint(msg.sender , amountInXfETH);

156 emit Deposit(msg.sender , amountInXfETH , msg.value);

157 }

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider adding a parameter variable for the deposit function that allows

the user to revert the transaction if the Xfeth returned value is lower

than expected.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.5 (HAL-05) ADDLIQUIDITYETH
FUNCTION MAY REVERT ON FIRST
DEPOSIT - INFORMATIONAL (0.0)

Description:

The addLiquidityETH function from the XfaiV0Periphery01.sol contract, on

the first deposit to the Weth/Xfeth pool, splits the value of ETH sent by

the user to use each amount to obtain weth and xfeth. With those obtained

amounts at the end of the function, it performs a require statement,

where those values are added and need to be equal to the msg.value.

The problem of this implementation arises when the first deposit is done

with and odd ETH number. In this case, the require statement will revert

due to solidity precision loss.

Code Location:

Listing 8: XfaiV0Periphery01.sol (Lines 177,187)

163 function addLiquidityETH(

164 address _to ,

165 uint _deadline

166) external payable override ensure(_deadline) returns (uint

ë liquidity) {

167 address _weth = weth; // gas saving

168 uint amountETH;

169 uint amountXfETHtoETH;

170 address pool = IXfaiFactory(factory).getPool(_weth);

171 if (pool == address (0)) {

172 // create the pool if it doesn 't exist yet

173 pool = IXfaiFactory(factory).createPool(_weth);

174 }

175 (uint ETHReserve , uint xfETHReserve) = IXfaiPool(pool).

ë getStates ();

176 if (ETHReserve == 0 && xfETHReserve == 0) {

177 (amountETH , amountXfETHtoETH) = (msg.value / 2, msg.value /

ë 2);

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

178 } else {

179 amountETH = (msg.value * ETHReserve) / (ETHReserve +

ë xfETHReserve);

180 amountXfETHtoETH = msg.value - amountETH;

181 }

182 uint amountXfETH = IXFETH(xfETH).deposit{value:

ë amountXfETHtoETH }();

183 IWETH(_weth).deposit{value: amountETH }();

184 TransferHelper.safeTransfer(xfETH , pool , amountXfETH);

185 TransferHelper.safeTransfer(_weth , pool , amountETH);

186 liquidity = IXfaiV0Core(core).mint(_weth , _to);

187 require(msg.value == amountETH + amountXfETHtoETH , '

ë XfaiV0Periphery01: INSUFFICIENT_AMOUNT ');

188 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

The case of doing a first deposit with an odd number is an edge case.

Nevertheless, it is possible to implement a solution for avoiding the

possibility to revert on a fair deposit.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.6 (HAL-06) ABSENCE OF TOKEN
OWNERSHIP CHECK IN THE BOOST
FUNCTION - INFORMATIONAL (0.0)

Description:

The function boost of the XfaiINFT.sol contract allows increasing the

number of shares of a specific NFT token ID, based on the amount of XFIT

tokens that the factory has received.

However, the function does not check if the caller owns the indicated

token ID. This does not represent a security risk, but it can prevent

certain unwanted scenarios from the user perspective.

Code Location:

Listing 9: XfaiINFT.sol (Line 217)

211 function boost(uint _tokenID) external override lock returns (uint

ë share) {

212 require(_tokenID <= counter , 'XfaiINFT: Inexistent_ID ');

213 uint amount = IERC20(underlyingToken).balanceOf(factory) -

ë reserve;

214 require(amount != 0, 'XfaiINFT: INSUFICIENT_AMOUNT ');

215 reserve += amount;

216 share = (1e18 * amount) / (reserve + initialReserve);

217 INFTShares[_tokenID] += share;

218 totalSharesIssued += share;

219 emit Boost(msg.sender , share , _tokenID);

220 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Consider adding a require statement that prevents any user except the

owner to increase the shares of the specified NFT.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.7 (HAL-07) THE PROTOCOL DOES NOT
ALLOW TO ADD LIQUIDITY USING XFETH -
INFORMATIONAL (0.0)

Description:

The current implementation of Xfai Protocol does not allow to users to

provide liquidity using Xfeth. The current functions of the protocol

force the user to supply ETH that is transformed into Xfeth.

This can be an issue for the users, specially to the ones that already

have xfeth minted, in the case of an appreciation of the xfeth token to

ETH.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider adding on the XfaiV0Periphery01.sol contract the necessary func-

tions to allow adding liquidity with the main token of the protocol.

Remediation Plan:

PENDING: The Xfai team plans to implement this functionality in the next

release.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.8 (HAL-08) REMOVING LIQUIDITY CAN
REVERT IF TOKEN ORDER IS NOT SET -
INFORMATIONAL (0.0)

Description:

The internal _removeLiquidity function of the XfaiV0Periphery01.sol con-

tract, receives two token addresses as parameters. These inputs come

from the external function removeLiquidity. If none of the inputs tokens

address is the WETH contract, the internal function is called, passing

directly the input user parameters received. The function then attempts

to retrieve the address of the pool corresponding to the token in the

first place, however, if the address corresponds to the Xfeth token, the

transaction reverts, attempting to call a function of the zero address.

Code Location:

Listing 10: XfaiV0Periphery01.sol (Lines 200,201)

191 function _removeLiquidity(

192 address _token0 ,

193 address _token1 ,

194 uint _liquidity ,

195 uint _amount0Min ,

196 uint _amount1Min ,

197 address _to

198) private returns (uint amount0 , uint amount1) {

199 address _core = core; // gas saving

200 address pool = XfaiLibrary.poolFor(_token0 , factory ,

ë poolCodeHash);

201 TransferHelper.safeTransferFrom(pool , msg.sender , _core ,

ë _liquidity);

202 (amount0 , amount1) = IXfaiV0Core(_core).burn(_token0 , _token1 ,

ë _to);

203 require(amount0 >= _amount0Min , 'XfaiV0Periphery01:

ë INSUFFICIENT_AMOUNT0 ');

204 require(amount1 >= _amount1Min , 'XfaiV0Periphery01:

ë INSUFFICIENT_AMOUNT1 ');

205 }

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider controlling the tokens address to avoid unnecessary reverts.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.9 (HAL-09) REDUNDANT VARIABLE -
INFORMATIONAL (0.0)

Description:

Line 363 of the XfaiV0Periphery01.sol contract is not required, as the

stored value of the variable is not used.

Code Location:

Listing 11: XfaiV0Periphery01.sol (Line 363)

346 function swapTokensForExactTokens(

347 address _to ,

348 address _token0 ,

349 address _token1 ,

350 uint _amount1Out ,

351 uint _amount0InMax ,

352 uint _deadline

353) external override ensure(_deadline) returns (uint amount0In) {

354 address pool0;

355 address pool1;

356 if (_token0 == xfETH) {

357 pool0 = XfaiLibrary.poolFor(_token1 , factory , poolCodeHash);

358 pool1 = XfaiLibrary.poolFor(_token1 , factory , poolCodeHash);

359 (uint r, uint w) = IXfaiPool(pool0).getStates ();

360 amount0In = XfaiLibrary.getAmountIn(w, r, _amount1Out ,

ë IXfaiV0Core(core).getTotalFee ());

361 } else if (_token1 == xfETH) {

362 pool0 = XfaiLibrary.poolFor(_token0 , factory , poolCodeHash);

363 pool1 = XfaiLibrary.poolFor(_token0 , factory , poolCodeHash);

364 (uint r, uint w) = IXfaiPool(pool0).getStates ();

365 amount0In = XfaiLibrary.getAmountIn(r, w, _amount1Out ,

ë IXfaiV0Core(core).getTotalFee ());

366 } else {

367 pool0 = XfaiLibrary.poolFor(_token0 , factory , poolCodeHash);

368 pool1 = XfaiLibrary.poolFor(_token1 , factory , poolCodeHash);

369 amount0In = XfaiLibrary.getAmountsIn(

370 pool0 ,

371 pool1 ,

372 _amount1Out ,

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

373 IXfaiV0Core(core).getTotalFee ()

374);

375 }

376 require(amount0In <= _amount0InMax , 'XfaiV0Periphery01:

ë INSUFFICIENT_INPUT_AMOUNT ');

377 TransferHelper.safeTransferFrom(_token0 , msg.sender , pool0 ,

ë amount0In);

378 _swap(_token0 , _token1 , _to);

379 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider erasing the unnecessary lines from the code base.

Remediation Plan:

SOLVED: The Xfai team removed the redundant variable on the next commit

ID 3ceca61a67a245e4bb7d7774cfbb34e3eec1aeaa.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/xfai-labs/xfai/commit/3ceca61a67a245e4bb7d7774cfbb34e3eec1aeaa

4.10 (HAL-10) LACK OF UPGRADABILITY
PATTERN - INFORMATIONAL (0.0)

Description:

The current version of the project only allows the core contract to be

upgraded. This can be useful either to fix potential unwanted behaviors

and also to add new functionalities in future releases of the protocol.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider adding proxy contracts that allow other components of the pro-

tocol to be upgradable.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.11 (HAL-11) CONVERT STRINGS FOR
CUSTOM ERRORS TO SAVE GAS -
INFORMATIONAL (0.0)

Description:

Custom errors are available from Solidity version 0.8.4. Custom errors

save ~50 gas each time they are hit by avoiding having to allocate and

store the revert string. Not defining strings also saves deployment gas.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider replacing all revert strings with custom errors.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://blog.soliditylang.org/2021/04/21/custom-errors/#errors-in-depth
https://blog.soliditylang.org/2021/04/21/custom-errors/#errors-in-depth

4.12 (HAL-12) FLOATING PRAGMA -
INFORMATIONAL (0.0)

Description:

Contracts should be deployed with the same compiler version and flags

used during development and testing. Locking the pragma helps to ensure

that contracts do not accidentally get deployed using another pragma.

For example, an outdated pragma version might introduce bugs that affect

the contract system negatively.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider locking the pragma version in the smart contracts. It is not

recommended to use a floating pragma in production.

For example: pragma solidity 0.8.20;

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.13 (HAL-13) LACK OF PAUSE
FUNCTIONALITY ON THE CONTRACTS -
INFORMATIONAL (0.0)

Description:

Although the core contract can be paused, the xfETH.sol contract and the

XfaiINFT.sol do not contain any pausable modifier.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider implementing the pausable security model on the contracts left.

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.14 (HAL-14) LACK OF TWO STEP
OWNERSHIP TRANSFER - INFORMATIONAL
(0.0)

Description:

The current ownership transfer process for all the contracts inheriting

from Ownable involves the current owner calling the transferOwnership()

function:

Listing 12: Ownable.sol

97 function transferOwnership(address newOwner) public virtual

ë onlyOwner {

98 require(newOwner != address (0), "Ownable: new owner is the

ë zero address");

99 _setOwner(newOwner);

100 }

If the nominated EOA account is not a valid account, it is entirely possi-

ble that the owner may accidentally transfer ownership to an uncontrolled

account, losing the access to all functions with the onlyOwner modifier.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to implement a two-step process where the owner nominates

an account and the nominated account needs to call an acceptOwnership()

function for the transfer of the ownership to fully succeed. This ensures

the nominated EOA account is a valid and active account.

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.3/contracts/access/Ownable.sol#L61-L64

Remediation Plan:

ACKNOWLEDGED: The Xfai team acknowledged this finding.

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

47

AUTOMATED TESTING

5.1 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

XfaiFactory.sol

XfaiINFT.sol

48

AU
TO

MA
TE

D
TE

ST
IN

G

XfaiPool.sol

XfaiV0Core.sol

49

AU
TO

MA
TE

D
TE

ST
IN

G

XfaiV0Periphery01.sol

50

AU
TO

MA
TE

D
TE

ST
IN

G

xfETH.sol

• No major issues found by MythX.

51

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	AUTOMATED SECURITY SCAN
	Description
	MythX results

